

Report in Accordance with BS EN ISO 10077-1:2017

# Thermal Performance of Windows, Doors & Shutters

### Calculation of Thermal Transmittance Part 1: Simplified Method

#### CONFIDENTIAL

Report reference:CU22330-1Issue date:24/10/2022Project:Aluminium Korniche Bi-Fold Doorset<br/>w/ Revised Glazing UnitPrepared for:Aanco (UK) Ltd<br/>T/A Made For Trade<br/>Wellington House, Wynyard Avenue<br/>Wynyard<br/>Billingham TS22 5TBPrepared by:Andrew Threadgold

| Build Check Ltd                        |                   |
|----------------------------------------|-------------------|
| Unit 5<br>Lincoln Park Business Centre |                   |
| Lincoln Road                           |                   |
| High Wycombe                           |                   |
| Bucks HP12 3RD                         |                   |
| Tel: 01494 452713                      | UK Approved Body: |
| E-mail: info@buildcheck.co.uk          | 1806              |

This document is confidential and remains the property of Build Check Ltd Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

The legal validity of this report can only be claimed on presentation of the complete report.



### 1 Introduction

This document details the thermal performance calculation of the doorset configuration as detailed below.

The results in this report relate only to the specimen tested and as drawings and specification received.

The frame profile results detailed below are provided by computer simulation using LBL software program THERM 5.2 and validated against proofs in Annex I (I1 to I10) of BS EN ISO 10077-2:2017. The frame profile results detailed below are provided from methods contained in BS EN ISO 10077-1:2017 and in accordance with thermal transmittance requirements detailed in BS EN 14351-1:2006 +A1:2010. Cavities are calculated in accordance with BS EN ISO 10077-2 section 6.4.3 Treatment of cavities using the single equivalent thermal conductivity method.

### 2 Summary of Results

### 2.1 Frame thermal transmittance (in accordance with BS EN ISO 10077-1: 2017)

| Frame Profile | Frame Thermal Transmittance (Uf) |
|---------------|----------------------------------|
| Left Jamb     | 3.0 W/m <sup>2</sup> K           |
| Right Jamb    | 2.8 W/m <sup>2</sup> K           |
| Head          | 2.9 W/m <sup>2</sup> K           |
| Threshold     | 2.9 W/m <sup>2</sup> K           |
| Meeting Stile | 2.3 W/m²K                        |

# 2.2 Linear thermal transmittance (in accordance with BS EN ISO 10077-1: 2017)

| Frame Profile | Linear Thermal Transmittance (ψ) |
|---------------|----------------------------------|
| Left Jamb     | 0.032 W/m.K                      |
| Right Jamb    | 0.029 W/m.K                      |
| Head          | 0.028 W/m.K                      |
| Threshold     | 0.028 W/m.K                      |
| Meeting Stile | 0.074 W/m.K                      |

## 2.3 Centre pane U-Value of glazing calculated in accordance with BS EN 673: 2011

| Glazing unit                              | Centre pane U-value (Ug) |
|-------------------------------------------|--------------------------|
| Nominal dimensions 6.8-18-4 90% argon 10% |                          |
| air filled, normal emissivity 0.01 (6.8mm | $1.1 M/m^{2}$            |
| Pilkington Optilam Clear, 18mm Thermoseal |                          |
| Thermobar, 4mm Pilkington S1+)            |                          |

The legal validity of this report can only be claimed on presentation of the complete report.



### 2.4 U-Value

The thermal performance of the doorset  $(U_d)$  in accordance with EN ISO 10077-1:2017 is:

### 1.6 W/m<sup>2</sup>K

All profile calculations based on BS EN ISO 10077-2:2017

### 3 Authorisation

|            | Issued by:        |
|------------|-------------------|
| Signature: | Moncafeld         |
| Name:      | Andrew Threadgold |
| Title:     | Test Engineer     |

The legal validity of this report can only be claimed on presentation of the complete report.